Issue No. : CE-VFK-CE-22 Date of Issue : September 19, 2006

Panasonic

ENGINEERING DRAFT

Product Description Customer Part Number	: Aluminum Electrolytic Capacitor :
Product Part Number	: V type FK series (Anti-Vibration type)
Country of Origin Marking of the Origin Applications	 Japan, China Printed on the packaging label It has the intention of being used for a general electronic circuit given in a notice matter (limitation of a use). On the occasion of application other than the above, even person in charge of our company needs to inform in advance.
Term of Validity	: September 18, 2007 from the date of issue

These specifications are temporary specifications. Ask factory for technical specifications before purchase and / or use.

Capacitor Business Unit	Prepared by	[:] Engineering Group Aluminum Engineering Team
Panasonic Electronic Devices Co.,Ltd.	Contact Person	:
25.Kohata-nishinakaUji City, Kyoto, 611-8585, Japan Phone (774)32-1111	Singnature Name(Prrint) Title	Haruhiko Handa : Engineer
Phone :+81-774-33-3209(Direct) Fax :+81-774-32-3189	Authorized by Singnature Name(Prrint) Title	: Hisao Nagara : Manager
		No. 3699215-8Q199

	Engine	ering Draft	CE-VFK-CE-22
	V type	FK series	1
Notice matter			
Law and regulation which	ch are applied		
		Directive (Restriction of the use of certain Hazardo c equipment (DIRECTIVE 2002/95/EC).	ius
 No Ozone Depleting Ch are used in producing the 	nemicals(ODC' his product.	's), controlled under the Montreal Protocol Agreeme	ent,
· We do not PBBs or PBI	DEs as bromin	ated flame retardants.	
 All the materials that an "Law Concerning the E 	e used for this Examination an	product are registered as "Known Chemicals" in the description of Manufacture, etc. of Chemical Sul	le Japanese act bstances".
		port related regulations, such as foreign exchang port of this product Thank you for your considerations	
 Limitation of a use 			
home appliances, comp and industrial robots. High reliability and saf	outers and othe ety are require or property] m	for electronics circuits such as audio/visual equipmer office equipment, optical equipment, measuring of the deline of the delin	equipment his product may do
 Unless otherwise specif 	ied, the produ	uct shall conform to JIS 5101-18-2	
Country of origin : JAPA	N, CHINA		
 Manufacturing factory : 		lectronic Devices Yamaguchi Co.,Ltd. akutaguchi, Oaza-Asada,Yamaguchi City, Yamag pan	juchi
	No. 17 Chua	lanufacturing Xiamen Co., Ltd. ng Xin Road, Xiamen Torch Hi-Tech Industrial De an, China 361000	evelopment Zone,

Engineering Draft	CE-VFK-CE-22
V type FK series	2

1. Scope

Fixed capacitors for use in electronic equipment, Surface Mount Type Aluminum electrolytic capacitors with non-solid electrolyte.

2. Parts number

EEE	FK	00	000	Δ	V
2-1	2-2	2-3	2-4	2-5	2-6
EEV	FK	00	000	Δ	V
			2-4		

•2-1 Surface Mount Type Aluminum Electrolytic Capacitor (Lead-Free Products.)

•2-2	FK series	EEEFK******: Size code E to G
		EEVFK******: Size code H to K

•2-3 Rated Voltage Code

Voltage code	0J	1A	1C	1E	1V	1H	1J	1K	2A
Rated voltage(V.DC)	6.3	10	16	25	35	50	63	80	100

2-4 Capacitance Code: Indicate capacitance In µF by 3 letters. The first 2 figures are actual values and the third denotes the number of zeros.
 "P" denotes the desimal point and all figures are the actual number with "P".

"R" denotes the decimal point and all figures are the actual number with "R".

ex. $0.1\mu F \rightarrow R10$, $1\mu F \rightarrow 1R0$, $10\mu F \rightarrow 100$

-2-5 U : Chip type FK series of expanded capacitance range

*Products with the case size of φ 8 to φ 10 (Size code E to G) are produced only in Japan.

•2-6	Suffix Code for Appearance: Taping Co	ode
------	---------------------------------------	-----

	16.0mm width (Size code "E")
V	24.0mm width (Size code " $F \sim G$ ")
v	32.0mm width (Size code "H")
	44.0mm width (Size code "J~K")

See the drawing in item 11 for the polarity alignment.

Panasonic Electronic Devices Co.,Ltd.

		Engineering Draft										
		V type	e FKs	series			3					
Parts lists	8											
Size Code	Taping Part No.	R.V. [V.DC]	Cap. [µF] (120Hz)	Tangent of Loss Angle (tanδ) max. (120Hz)	Leakage Current [µA] max. (After	Impedance [Ω] max. (100kHz) (20°C)	Rated Ripple C [mA rms] max. (100kHz) (105°C)					
		0.0	(20°C)	(20°C)	2 min.)	0.00						
<u> </u>	EEEFK0J331V	6.3	330 470	0.26	20.7	0.26	300 600					
<u>- </u>	EEEFK0J471V EEEFK0J102V	6.3 6.3	1000	0.26	29.6 63.0	0.16	600					
G F	EEEFK0J152V	6.3	1500	0.26	94.5	0.08	850					
H13	EEVFK0J332V	6.3	3300	0.20	94.5 207.9	0.08	1100					
J16	EEVFK0J682V	6.3	6800	0.36	428.4	0.035	1800					
510		0.5	0000	0.00	420.4	0.000	1000					
E	EEEFK1A221V	10	220	0.19	22.0	0.26	300					
 F	EEEFK1A331V	10	330	0.19	33.0	0.16	600					
F	EEEFK1A471V	10	470	0.19	47.0	0.16	600					
F	EEEFK1A681V	10	680	0.19	68.0	0.16	600					
G	EEEFK1A102V	10	1000	0.19	100.0	0.08	850					
H13	EEVFK1A222V	10	2200	0.21	220.0	0.06	1100					
J16	EEVFK1A472V	10	4700	0.25	470.0	0.035	1800					
K16	EEVFK1A682V	10	6800	0.29	680.0	0.033	2060					
E	EEEFK1C221V	16	220	0.16	35.2	0.26	300					
F	EEEFK1C331V	16	330	0.16	52.8	0.16	600					
F	EEEFK1C471V	16	470	0.16	75.2	0.16	600					
G	EEEFK1C681V	16	680	0.16	108.8	0.08	850					
H13	EEVFK1C152V	16	1500	0.16	240.0	0.06	1100					
J16	EEVFK1C332V	16	3300	0.20	528.0	0.035	1800					
K16	EEVFK1C472V	16	4700	0.22	752.0	0.033	2060					
E	EEEFK1E101V	25	100	0.14	25.0	0.26	300					
F	EEEFK1E151V	25	150	0.14	37.5	0.16	600					
F	EEEFK1E221V	25	220	0.14	55.0	0.16	600					
F	EEEFK1E331V	25	330	0.14	82.5	0.16	600					
G	EEEFK1E471V	25	470	0.14	117.5	0.08	850					
H13	EEVFK1E102V	25	1000	0.14	250.0	0.06	1100					
J16	EEVFK1E222V	25	2200	0.16	550.0	0.035	1800					
K16	EEVFK1E332V	25	3300	0.18	825.0	0.033	2060					
F	EEEFK1V101V	35	100	0.12	35.0	0.16	600					
F	EEEFK1V151V	35	150	0.12	52.5	0.16	600					
F	EEEFK1V221V	35	220	0.12	77.0	0.16	600					
G	EEEFK1V331V	35	330	0.12	115.5	0.08	850					
H13	EEVFK1V471V	35	470	0.12	164.5	0.06	1100					
H13	EEVFK1V681V	35	680	0.12	238.0	0.06	1100					
J16	EEVFK1V102V	35	1000	0.12	350	0.035	1800					
J16	EEVFK1V152V	35	1500	0.12	525.0	0.035	1800					

*Products with the case size of φ 8 to φ 10 (Size code E to G) are produced only in Japan.

Panasonic Electronic Devices Co., Ltd.

	Engineering Draft											
	V type FK series											
arts lists	arts lists											
				Tangent of		Impedance	Rated Ripple C					
Size	Taping Part No.	R.V.	Cap.	Loss Angle		[Ω]	[mArms					
Code		[V.DC]	[µF]	(tanδ)	[µA]	max.	max.					
			(40011-)	max.	max.	(100kHz)	(100kHz)					
			(120Hz) (20℃)	(120Hz) (20℃)	(After 2 min.)	(20°C)	(105℃)					
E	EEEFK1H330V	50	33	0.10	<u>2 mm.)</u> 16.5	0.68	195					
E	EEEFK1H470V	50	47	0.10	23.5	0.68	195					
 F	EEEFK1H101V	50	100	0.10	50.0	0.34	350					
G	EEEFK1H151V	50	150	0.10	75.0	0.18	670					
G	EEEFK1H221V	50	220	0.10	110.0	0.18	670					
H13	EEVFK1H331V	50	330	0.10	165.0	0.12	900					
H13	EEVFK1H391V	50	390	0.10	195.0	0.12	900					
J16	EEVFK1H471V	50	470	0.10	235.0	0.073	1610					
J16	EEVFK1H681V	50	680	0.10	340.0	0.073	1610					
J16	EEVFK1H102V	50	1000	0.10	500.0	0.073	1610					
E	EEEFK1J220V	63	22	0.08	13.8	1.2	120					
F	EEEFK1J330V	63	33	0.08	20.7	0.65	250					
F	EEEFK1J470V	63	47	0.08	29.6	0.65	250					
F	EEEFK1J680UV	63	68	0.08	42.8	0.65	250					
G	EEEFK1J101V	63	100	0.08	63.0	0.35	400					
H13	EEVFK1J151V	63	150	0.08	94.5	0.16	800					
H13	EEVFK1J221V	63	220	0.08	138.6	0.16	800					
J16	EEVFK1J471V	63	470	0.08	296.1	0.082	1410					
K16	EEVFK1J681V	63	680	0.08	428.4	0.08	1690					
		0.0	4.0	0.00	0.0	0.4						
<u> </u>	EEEFK1K100V	80	10	0.08	8.0	2.4	60					
<u> </u>	EEEFK1K220V EEEFK1K330V	80 80	22 33	0.08	17.6 26.4	<u>1.3</u> 1.3	<u>130</u> 130					
G	EEEFK1K470V	80	47	0.08	37.6	0.7	200					
H13	EEVFK1K680V	80	68	0.08	54.4	0.32	500					
H13	EEVFK1K101V	80	100	0.08	80.0	0.32	500					
H13	EEVFK1K151V	80	150	0.08	120.0	0.32	500					
J16	EEVFK1K331V	80	330	0.08	264.0	0.17	793					
K16	EEVFK1K471V	80	470	0.08	376.0	0.153	917					
				0.00	0,0.0	0.100						
F	EEEFK2A220V	100	22	0.07	22.0	1.3	130					
G	EEEFK2A330V	100	33	0.07	33.0	0.7	200					
H13	EEVFK2A470V	100	47	0.07	47.0	0.32	500					
H13	EEVFK2A680V	100	68	0.07	68.0	0.32	500					
J16	EEVFK2A101V	100	100	0.07	100.0	0.17	793					
J16	EEVFK2A151V	100	150	0.07	150.0	0.17	793					
K16	EEVFK2A221V	100	220	0.07	220.0	0.153	917					
K16	EEVFK2A331V	100	330	0.07	330.0	0.153	917					

*Products with the case size of φ 8 to φ 10 (Size code E to G) are produced only in Japan.

Panasonic Electronic Devices Co.,Ltd.

		Engine	eering D	Draft				CE-	VFK-CE-		
V type FK series											
Can Size [Size coc	le]										
V.DC Cap.(µF)	6.3	10	16	25	35	50	63	80	100		
10								E			
22							E	F	F		
33						E	F	F	G		
47						E	F	G	H13		
68							(F)	H13	H13		
100				E	F	F	G	H13	J16		
150				F	F	G	H13	H13	J16		
220		E	Е	F	F	G	H13		K16		
330	E	F	F	F	G	H13		J16	K16		
390						H13					
470	F	F	F	G	H13	J16	J16	K16			
680		F	G		H13	J16	K16				
1000	F	G		H13	J16	J16					
1500	G		H13		J16						
2200		H13		J16							
3300	H13		J16	K16							
4700		J16	K16								
6800	J16	K16									

[mm]

Size code E: ϕ 8×6.5L F: ϕ 8×10.5L G: ϕ 10×10.5L H13: ϕ 12.5×13.8L J16: ϕ 16×16.8L

K16: φ18×16.8L

*Products with the case size of φ 8 to φ 10 (Size code E to G) are produced only in Japan.

Panasonic Electronic Devices Co., Ltd.

4-2 Construction parts

	Parts	Materials			Parts		Materials	
1	Terminal	Tinned Copper-Clad Steel wire		6	Anode Foil		High Purity Aluminum Foil	
		Tinned Copper-Clad Steel wire	(≧φ12.5) 7 Cath		Cathode Foil		Aluminum Foil	
2	Isolator	Thermo-plastic Resin		8	Electrolyte	Main Solvent	γ-Butylolactone	
3	Aluminum Can	Aluminum				Main Solute	Amidine salt (≦63V)	
4	Sealing Rubber	Synthetic rubber (IIR)					Organic acid Tertiary ammonium_salt (≧80V)	
5	Separator	Manila hemp		9	Supportive	terminal	Ni plated - 42alloy	

5. Marking

Marking Color : BLACK

Following items shall be marked on the body of Capacitor.

- a) Rated Voltage Mark
- b) Capacitance
- c) Negative Polarity
- d) Series Mark
- e) Lot No. (It indicates to Lot No. System)
- f) Mark for Lead-Free Products. (Black Circle: Size code B to G only)

Panasonic Electronic Devices Co.,Ltd.

Engineering	Draft			CE-VFK-CE-22							
LOT No. S	YSTEM			8							
For those made in JAPAN (Chip Type) A lot No. shall be given on the bottom of a ca Size Code (E~G) Style 1.											
	Z A 8 Indicating that the product was produced in Aug. 2002, under a line A month(1 to 9 and O for October, N for November, D for December) Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating that the product was produced in Aug. 2002, under a line A Indicating the product was produced in Aug. 2002, under a line A										
Size Code (H13~K21) <u>Style 2.</u>											
For those made in CHINA (Chip Type)	under a line B y(A to Z for 1st~2 e code in alphabet	for October, N for	27th~31s	t)							
m	under a line J ay(A to Z for 1st~	et (A to Z)	27th~31								
production year 2:2002 3:2003 4:2004 5:2005 Indicating with the last digit or the last 2 digits of a year.	produc 1:January 2:February 3:March 4:April 5:May 6:June	8:August 9:September O:October N:November	pro A=1 date 3=2 C=3 ~ Y=25 Z=26	e 1=27 date 2=28 3=29 4=30 5=31							

Engineering Draft	CE-VFK-CE-22
V type FK series	9

6. Standard rating

Nº	Item		Ratings								
1	Category Temperature Range		-55℃ ~ +105℃								
2	Rated Voltage Range		6.3 V.DC ~ 100 V.DC								
3	Capacitance Range	10 μF ~ 6800 μF (120Hz 20°C)									
4	Capacitance Tolerance	±20% (120Hz 20°C)									
5	Surge Voltage	R.V. 6.3 10 16 25 35 50 63 80 100					100				
	(V.DC)	S.V.	8	13	20	32	44	63	79	100	125
6	Rated Ripple Current	Parts lists and Table 3									
7	Impedance				F	Parts list	S				

Panasonic Electronic Devices Co.,Ltd.

CE-VFK-CE-22

V type FK series

10

7. Performance Characteristics

٧o	Item	Performance Characteristics	Test
1	Leakage Current	\leq I=0.01CV or 3µA whichever is the	Series Resistor : $1000\Omega \pm 10\Omega$
		greater.	Applied Voltage : Rated voltage
		∫ I:Leakage current C:Capacitance)	Measuring : After 2 minutes
		└V:Rated voltage	
2	Capacitance	Within the specified capacitance tolerance.	Measuring Frequency : 120Hz±20%
			Measuring Circuit : Equivalent series circuit
			Measuring Voltage : +1.5 V.DC ~ +2 V.DC
			(≦0.5 V for A.C.)
3	Tangent of Loss	Less than the table 1 value of item 8.	Measuring Frequency : 120Hz±20%
	Angle		Measuring Circuit : Equivalent series circuit
	(tanδ)	Added 0. 02 per 1000µF for items with	Measuring Voltage : +1.5 V.DC ~ +2 V.DC
		over 1000µF.	(≦0.5 V for A.C.)
		Impedance Ratio:	· · · · · · · · · · · · · · · · · · ·
	eristics at	Less than the table 2 value of item 8	Step Test Temperature(°C) Time
	High and	ratio against step 1.	1 20±2 —
		Leakage Current:	2 -25±3,-40±3,-55±3 30 min
	perature	$\leq 800\%$ of the value of item 7.1.	3 20±2 10 min~15 mi
		Capacitance Change:	4 105±2 30 min
		Within ±25% of the value in step 1.	5 20±2 10 min~15 mi
		Tangent of Loss Angle (tanδ):	Impedance should be measured 120Hz±10%.
_		\leq the value of item 7.3.	T () (F) = D = 0
5	Surge	Leakage Current:	Test temperature : 15℃~35℃
		≦the value of item 7.1.	Obvious Destautions Desistance 100 ± 50
		Capacitance Change:	Series Protective Resistance : $R = \frac{100 \pm 50}{C}$
		Within $\pm 15\%$ of initial measured value.	
		Tangent of Loss Angle (tanδ): ≦the value of item 7.3.	R: Protective resistance($k\Omega$)
			C: Capacitance(μ F)
		Appearance:	Test voltage : Surge voltage item 6.5 Applied voltage 1000 cycles of 30s±5s
		No significant change can be observed.	"ON"and 5 min 30 s"OFF".
			on and 5 min 50 s of 1.
6	Robustness of	There is no damage or breakage after test.	After fixing the capacitors, the terminals are
-	Termination		pulled in a vertical direction.
	(Tensile)		Load is gradually increased until it reached
	(/		the value specified below and held for 10
			seconds.
			Pull Strength 10N
			Keep time 10s±1s

Panasonic Electronic Devices Co.,Ltd.

CE-VFK-CE-22

V type FK series

11

٧o	Item	Performance Characteristics	Test
7	Anti-vibration performance	Capacitance : During test, measured value shall be stabilized.(Measured several times within 30 min. before completion of test) Appearance : No significant change can be observed. Capacitance Change : Within ±5% of initial measured value.	Acceleration : 294 m/s ² (30G) Frequency : 5Hz to 2000Hz Amplitude : 5 mmMAX(peak to peak) Direction and duration of vibration : It is done in the X,Y,Z axis direction for 2 hours each, with a total of 6 hours.
8	Solderability	More than 95% of the terminal surface shall be covered with new solder. Exclude the cross-section of cutting lead edge.	Solder Type : H60A,H60S,or H63A(JIS Z3282) Solder Temperature : 235°C±5°C Immersing Time : 2s±0.5s Immersing Depth : Dip the terminals for Approx. 0.5mm~1mm thick Flux : Approx 25% rosin(JIS K5902) in Ethanol(JIS K8101)
9	Resistance to Soldering heat	Leakage Current : ≦the value of item 7.1. Capacitance Change : Within ±10% of initial measured value. Tangent of Loss Angle (tanδ) : ≦the value of item 7.3. Appearance : No significant change can be observed.	After reflow soldering (item 9) The capacitor shall be left at room temperature for before measurement.
10	Solvent Resistance of the Marking	There shall be no damage end legibly marked. Marking can be deciphered easily.	Class of Reagent : Isopropyl Alcohol Test Temperature : 20°C~25°C Immersing time : 30s±5s
11	Damp Heat (steady state)	Leakage Current : ≦the value of item 7.1. Capacitance Change : Within ±15% of initial measured value. Tangent of Loss Angle (tanδ) : ≦120% the value of item 7.3. Appearance : No significant change can be observed.	Test Temperature : 40°C±2°C Relative Humidity : 90%~95% Test Duration : 240hours±8hours After subjected to the test, the capacitors shall be left for 2 hours at room temperature and room humidity prior to the measurement.

Panasonic Electronic Devices Co.,Ltd.

V type FK series

1.7		~
	1	

No	Item	Performance Characteristics	Test				
12	Pressure Relief	Pressure relief shall be operated without	A.C. Current Method				
۲		any hazardous expulsion or emission of flame. No emission of gas after 30 minutes of the voltage application also meets the specification.	AC. Power supply 50Hz or 60Hz A.C. ammeter R :Serie Y:A.C. voltmeter Cx :Test	C x C x			
			Applied Voltage : A.C. voltage equals to R.V. x 0.7 or 250 V(rms) whichever is smaller.				
			D.C. resistance(Q)				
	≦1		≦1	1000±100			
			>1 ≦10	100±10			
			>10 ≦100	10±1			
			>100 ≦1000	1±0.1			
		>1000 ≦1		0.1±0.01			
			>10000	*			
			* When capacitance is over 10000µF,the value of series resistance equals to the half of the tested capacitor's impedance.				
			Reverse Voltage Method				
			+ D.C. Power supply - (A):D.C. ammeter Cx :Te	Cx +			
			Nominal Diamether (mm)	D.C. Current(A)			
			≦ 22.4	1 (const)			

Panasonic Electronic Devices Co.,Ltd.

V type FK series

No	Item	Performance characteristics	Test
13	Endurance	Leakage Current :	Test Temperature : 105°C±2°C
		\leq the value of item 7.1.	Test Duration : 2000 ⁺⁷² 0 hours
		Capacitance change :	Applied Voltage : Rated voltage
		Within ±30% of initial measured value.	
		Tangent of Loss Aangle (tanδ):	
		\leq 200% of the value of item 7.3.	After subjected to the test, the capacitors shall
		Appearance :	be left at room temperature and room humidity
		No significant change can be observed.	for 2 hours prior to the measurement.
14	Shelf Life	Leakage Current :	Test Temperature : 105°C±2 °C
		\leq the value of item 7.1.	Test Duration : 1000 ⁺⁴⁸ 0 hours
		Capacitance Change :	
		Within ±30% of initial measured value.	After subjected to the test, D.C. rated
		Tangent of Loss Angle (tanδ) :	voltage shall be applied to the capacitors for
		\leq 200% of the value of item 7.3.	30 minutes as post-test treatment after left
		Appearance :	at the room temperature and humidity for 2
		No significant change can be observed.	hours prior to the measurement.

* Voltage treatment : The rated voltage shall be applied to the capacitors, which are connected to series protective resistors ($1000\Omega \pm 10\Omega$), for 30 minutes as a posttest treatment (performing discharge).

8. Other Characteristics

■ Table 1. Tangent of Loss Angle(tanδ)

R.V.(V D.C.)	6.3	10	16	25	35	50	63	80	100
D.F.(tanδ)	0.26	0.19	0.16	0.14	0.12	0.10	0.08	0.08	0.07
Added 0 02 per	4000.JE	for itomo y	with over		0000				

Added 0. 02 per 1000μ F for items with over 1000μ F items.

Table 2. Characteristics at low temperature Impedance ratio (at 120Hz)

R.V.(V D.C.)	6.3	10	16	25	35	50	63	80	100
Z(-25°C)/Z(20°C)	2	2	2	2	2	2	2	2	2
Z(-40°C)/Z(20°C)	3	3	3	3	3	3	3	3	3
Z(-55°C)/Z(20°C)	4	4	4	3	3	3	3	3	3

Table 3. Frequency Correction Factor of Rated Ripple Current

	Frequency (Hz)								
	50,60	120	1k	10k	100k~				
Coefficient	0.70	0.75	0.90	0.95	1.00				

Panasonic Electronic Devices Co.,Ltd.

A±0.2

Size code F,G

 12.0 ± 0.1

				[mm]
Size				
Code	Α	В	С	D
Е	8.7	8.7	11.4	6.8
F	8.7	8.7	12.5	11.0
G	10.7	10.7	14.5	11.0

* Dimensions of A and B are measured at the bottom of the embossed part.

Panasonic Electronic Devices Co., Ltd.

								[mm]	
Size		Taping Dimension							
Code	A	В	C	D	F	Р	S	W	
H13	14.0	14.0	18.0	14.5	14.2	24.0	28.4	32.0	
J16	17.5	17.5	23.0	17.5	20.2	28.0	40.4	44.0	
K16	19.5	19.5	26.0	17.5	20.2	32.0	40.4	44.0	
* Dimensions of A and P are measured at the better of the amb									

* Dimensions of A and B are measured at the bottom of the embossed part.

10-2 Reel

Engineering Draft	CE-VFK-CE-22

Application Guidelines

- * This specification guarantees the quality and performance of the product as individual components.
- Before use, check and evaluate their compatibility with installed in your products.
- * Do not use the products beyond the specifications described in this document.
- * Install the following systems for a failsafe design to ensure safety if these products are to be used in equipment where a defect in these products may cause the loss of human life or other signification damage, such as damage to vehicles (automobile, train, vessel), traffic lights, medical equipment, aerospace equipment, electric heating appliances, combustion/ gas equipment, rotating equipment, and disaster/crime prevention equipment.
 - The system is equipped with a protection circuit and protection device.
 - The system is equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault.

* Before using the products, carefully check the effects on their quality and performance, and determined whether or not they can be used. These products are designed and manufactured for general-purpose and standard use in general electronic equipment.

These products are not intended for use in the following special conditions.

- 1. In liquid, such as Water, Oil, Chemicals, or Organic solvent
- 2. In direct sunlight, outdoors, or in dust
- 3. In vapor, such as dew condensation water of resistive element, or water leakage, salty air, or air with a high concentration corrosive gas, such as Cl2, H2S, NH3, SO2, or NO2
- 4. In an environment where strong static electricity or electromagnetic waves exist
- 5. Mounting or placing heat-generating components or inflammables, such as vinyl-coated wires, near these products
- 6. Sealing or coating of these products or a printed circuit board on which these products are mounted, with resin and other material
- 7. Using resolvent, water or water-soluble cleaner for flux cleaning agent after soldering.
 - (In particular, when using water or a water-soluble cleaning agent, be careful not to leave water residues)
- * Please arrange circuit design for preventing impulse or transitional voltage.

Do not apply voltage, which exceeds the full rated voltage when the capacitors receive impulse voltage, instantaneous high voltage, high pulse voltage etc.

* Electrolyte is used in the products. Therefore, misuse can result in rapid deterioration of characteristics and functions of each product. Electrolyte leakage damages printed circuit and affects performance, characteristics, and functions of customer system.

1. Circuit Design

1.1 Operating Temperature and Frequency

Electrical parameters for electrolytic capacitors are normally specified at 20 °C temperature and 120 Hz frequency.

These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration. (1) Effects of operating temperature on electrical parameters

- a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
- b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies, capacitance and impedance decrease while $\tan \delta$ increases.
- b) At lower frequencies, heat generated by ripple current will rise due to an increase in equivalent series resistance (ESR).

1.2 Operating Temperature and Life Expectancy

- (1) Expected life is affected by operating temperature. Generally, each 10 °C reduction in temperature will double the expected life. Use capacitors at the lowest possible temperature below the upper category temperature.
- (2) If operating temperatures exceed the upper category limit, rapid deterioration of electrical parameter will occur and irreversible damage will result.

Check for the maximum capacitor operating temperatures including ambient temperature, internal capacitor temperature rise due to ripple current, and the effects of radiated heat from power transistors, IC's or resistors.

Avoid placing components, which could conduct heat to the capacitor from the back side of the circuit board.

(3) The formula for calculating expected life at lower operating temperatures is as follows ;

$$_{2} = L_{1} \times 2^{\frac{T_{1}-T}{10}}$$

- L_1 : Guaranteed life (h) at temperature, $T_1 \ ^\circ C$
- L_2 : Expected life (h) at temperature, T_2 °C
- T_1 : Upper category temperature (°C)

T₂ : Actual operating temperature, ambient temperature + temperature rise due to ripple current heating(°C)

(4) Please use according to the lifetime as noted in this specification. Using products beyond end of the lifetime may change characteristics rapidly, short-circuit, operate pressure relief vent, or leak electrolyte.

Panasonic Electronic Devices Co.,Ltd.

		Engir	neering	Draft					CE-VFK-CE-22
Application Guidelines							22		
 1.3 Common Application Conditions to Avoid The following misapplication load conditions will cause rapid deterioration of a capacitor's electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur, causing the pressure relief vent to operate and resultant leakage of electrolyte. Under extreme conditions, explosion and fire ignition could result. The leaked electrolyte is combustible and electrically conductive. 									
 (1) Reverse Voltage DC capacitors have polari capacitors. DC bipolar c (2) Charge / Discharge Applica 	apacitors a ations	re not suit	able for us	se in AC cii	cuits.			·	
Standard capacitors are n with your actual applicatio (3) Over voltage	n condition			-					
Do not apply voltages exc short periods of time. Ensure that the sum of the	-				-		-		
(4) Ripple Current Do not apply ripple curren high ripple currents. In a Ensure that rated ripple cu	ddition, cor	nsult us if	the applied	d ripple cui	rent is to b	e higher th	nan the ma	aximum specifi	ed value.
1.4 Using Two or More Capacit (1) Capacitors Connected in P The circuit resistance can	ors in Seri arallel closely app	es or Par	allel the series	resistance	e of the cap	pacitor, cau	ising an in	nbalance of rip	ple current loads within
Differences in normal DC	 the capacitors. Careful wiring methods can minimize the possible application of an excessive ripple current to a capacitor. (2) Capacitors Connected in Series Differences in normal DC leakage current among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage currents can prevent capacitor voltage imbalances. 								
(1) Double-Sided Circuit Board Avoid wiring pattern runs,(2) Land/ Pad Pattern	(1) Double-Sided Circuit Boards Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.								
				space Enl		owing tabi	e.		
$\begin{bmatrix} G \\ H \\$									
[Table of Board Land Size vs Size / Dimension	s. Capacitor A	Size] B	С	D	E	F	G	[mm] H	
E (ϕ 8×6.5L) F (ϕ 8×10.5L)	1.8 2.7	4.1 4.0	5.0 4.7	1.3 1.3	1.5 1.0	1.4 1.7	1.5 1.1	2.0 2.5	
G (φ 10) Η (φ 12.5)	3.9 3.9	4.4 6.0	4.7 6.9	1.3 2.8	1.2 1.3	1.9 1.9	1.1 2.2	2.5 2.5	
J (<i>ф</i> 16)	5.8	6.8	6.2	3.6	1.3	1.9	1.7	2.8	
K(ϕ 18) $\%$ The land pattern and si	5.8 ze shall be	7.3 decided in	6.2 n consider	3.6 ation of mo	1.8 puntability,	1.9 solderbility	1.7 and strer	2.8 ngth.	
 (3) Clearance for Case Mounte Capacitors with case mount The minimum clearance and (Dia 10mm ~ Dia 16mm) (4) Wiring Near the Pressure R Avoid locating high voltage exceeds 100° C may be re (5) Circuit Board Patterns Under 	d Pressure nted pressure re depende : 2mm mini elief ($\geq \phi$ 1 or high cur leased which r the Capaci	Relief (≧ ire relief re mt on capa imum , Dia 0 mm) rent wiring ch could d citor	ϕ 10 mm) equire suff acitor diam a 18mm : g or circuit issolve the	icient clear neters as fo 3mm minin board patt e wire insu	ance to all blows. hum) hs above th lation and i	ow for pro ne pressur gnite.	per pressu e relief . F	ire relief opera	
Avoid circuit board runs un 1.6 Electrical Isolation of the Ca Completely isolate the capacit	pacitor			ai short ca	n occur du	e io an ele	ectrolyte le	akaye.	

· Between the cathode and the case and between the anode terminal and other circuit paths.

1.7 Capacitor Sleeve

The laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

Panasonic Electronic Devices Co.,Ltd.

	Engineering Draft	CE-VFK-CE-22
	Application Guidelines	23
Capacitor Handling Techniques		
2.1 Considerations Before Using	J	
	Do not reuse or recycle capacitors from used equipment.	
	ay be generated in the capacitor due to dielectric absorption.	
	be discharged with a resistor with a value of about 1kΩ. Deriod of time may exhibit an increase in leakage current.	
	dually applying rated voltage in series with a resistor of approximately ?	1kO
	ey can be damaged mechanically or electrically. Avoid using dropped	
	s should not be used. The seal integrity can be damaged and loss of	
2.2 Capacitor Insertion		
	and rated voltage of the capacitor.	
(2) Verify the correct polarity of the(2) Verify the correct hole spacing		
	g and land pattern size before insertion to avoid stress on the terminals essive mounting pressure can cause high leakage current, short circuit	
a Manual Soldering		.,
(1) Observe temperature and time	e soldering specifications or do not exceed temperature of 350 $^\circ\!\text{C}$ for 3	
	be removed and reinserted, avoid excessive stress on the capacitor lea	
	een the tip of the soldering iron and capacitors to prevent or capacitor f	failure.
2.4 Reflow Soldering (1) For reflow use a thermal con	duction system such as infrared radiation (IR) or hot blast.	
	(VPS) are not recommended.	
(2) Observe proper soldering con	nditions (temperature, time, etc.). Do not exceed the specified limits.	
	acitor top shall be measured by using thermal couple that is fixed firmly	y by epoxy glue.
• •	one time. Consult us for additional reflow restrictions.	
2.5 Capacitor Handling after Sole (1) Avoid moving the capacitor aft	er soldering to prevent excessive stress on the lead wires where they	enter the seal
	handle when moving the circuit board assembly.	enter the seal.
	er assembly to prevent failure due to excessive shock.	
2.6 Circuit Board Cleaning		
. ,	ed or ultrasonically cleaned using suitable cleaning solvents for up to 5	minutes
	nperatures. The boards should be thoroughly rinsed and dried. eaning agents is not recommended for the purpose of protecting our er	nvironmont
	eaning agents is not recommended for the purpose of protecting our erent groups unless specifically allowed in the specification ;	Mionment.
	nts : except for solvent resistant capacitor types, halogenated solvents	can permeate the seal and cause
5 5	internal capacitor corrosion and failure.	
	For solvent resistant capacitors, carefully follow the temperature a	
	specification. 1-1-1 trichloroethane should never be used on any a	aluminum electrolytic capacitor.
 Alkaline solvents Petroleum based solvents 	: could react and dissolve the aluminum case. : deterioration of the rubber seal could result.	
 Xylene 	: deterioration of the rubber seal could result.	
Acetone	: removal of the ink markings on the vinyl sleeve could result.	
	ng is required to remove residual cleaning solvents that may be trapped	d between the capacitor and the circuit
	tures, which exceed the Upper category temperature of the capacitor. els of the cleaning solvents during use in terms of electrical conductivity	v pH specific gravity or water content
	ontamination and adversely affect the performance of the capacitor.	, p, opecane gravity, or water content
	ethod, the marking on a capacitor may be erased or blurred.	
Please consult us if you are no	ot certain about acceptable cleaning solvents or cleaning methods.	
.7 Mounting Adhesives and Coa	ting Agents	
	s or coating agents to control humidity, avoid using materials containing	g halogenated solvents.
Also, avoid the use of chloroprer	ne based polymers.	
Harden on dry adhesive or coati	ng agents well lest the solvent should be left.	
After applying adhesives or coat board.	ings, dry thoroughly to prevent residual solvents from being trapped be	etween the capacitor and the circuit
2.8 Fumigation		

In exporting electronic appliances with aluminum electrolytic capacitors, in some cases fumigation treatment using such halogen compound as methyl bromide is conducted for wooden boxes.

If such boxes are not dried well, the halogen left in the box is dispersed while transported and enters in the capacitors inside. This possibly causes electrical corrosion of the capacitors. Therefore, after performing fumigation and drying make sure that no halogen is left.

Don't perform fumigation treatment to the whole electronic appliances packed in a box.

Panasonic Electronic Devices Co.,Ltd.

Engineering Draft	CE-VFK-CE-22
Application Guidelines	24
 3. Precautions for using capacitors 3.1 Environmental Conditions Capacitors should not be stored or used in the following environments. (1) Exposure to temperatures above the upper category or below the lower category temperature of the capacito (2) Direct contact with water, salt water, or ol. (3) High humidity conditions where water could condense on the capacitor. (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, Chlorine compound, Bro ammonia. (5) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, Chlorine compound, Bro ammonia. (5) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, Chlorine compound, Bro ammonia. (6) Wibration and shock conditions exceeding specified requirements. 3.2 Electrical Precautions (1) Avoid fourhing the terminals of a capacitor as a possible electric shock could result. The exposed aluminur could also cause electric shock if touched. (2) Avoid short circuiting the area between the capacitor terminals with conductive materials including liquids su 4. Emergency Procedures (1) If the pressure relief of the capacitor operates, immediately turn off the equipment and disconnect from the p This will minimize an additional damage caused by the vaporizing electrolyte. (2) Avoid fourtact with the esciping electrolyte gas, which can exceed 100 TC temperatures. If electrolyte org as ingresed by mouth, gargle with water. (4) Exposure to temperatures above the size start, wash with soap and water. (5) Long Term Storage Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a ful secosity dura readonic ing. an abornamity high current will be required to restore the oxide film. This surge current to a capacitor increases with long storage times. The aluminum oxide film det	mine, Bromine compound or n case is not insulated and ch as acids or alkaline solutions. ower source. Inction of temperature and time. ioned by applying the rated r. mine, Bromine compound or