

RF Filters for Cellular Phones

Series/Type: B4167

The following products presented in this data sheet are being withdrawn.

Ordering Code	Substitute Product		Deadline Last Orders	Last Shipments
B39182B4167U510	B39182B4142U410	2009-04-03	2009-07-15	2009-10-15

For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.

SAW Components	B4167
Low-Loss Filter for Mobile Communication	1842,5 MHz
Data Sheet	
	Ceramic package DCC6D
Features	
 Low-loss RF filter for mobile telephone 	
PCN systems, receive path	0,6
Low amplitude ripple	
 Usable passband 75 MHz 	က် မြူမီ က
 Unbalanced to balanced operation 	
• Impedance transformation from 50Ω to 200Ω	1,8
Package for Surface Mounted Technology	
(SMT)	
 Ceramic SMD package 	3.0
	3,0 '
Terminals	
Ni, gold-plated	tt (

Dimensions in mm, approx. weight 0,037 g

Pin configuration

Input, unbalanced
Output, balanced
Input ground
To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to
B4167	B39182-B4167-U510	C61157-A7-A68	F61074-V8089-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Т	- 20 / + 75	°C	
Storage temperature range	T _{stg}	- 40 / + 85	°C	
DC voltage	V _{DC}	5	V	
Input power max. 1710 1785 MHz	$P_{\rm IN}$	11	dBm	source/load impedance 50/200 Ω peak power of GSM signal, duty cycle 2 : 8
1805 1880 MHz	$P_{\rm IN}$	11	dBm	
elsewhere	P _{IN}	0	dBm	

SAW Components						B4167
Low-Loss Filter for Mobile Communication					1842,	5 MHz
Data Sheet						
Characteristics						
Operating Temperature Range: Terminating source impedance: Terminating load impedance:	= 500	= +25 \pm 2 °C = 50 Ω (unbalanced) = 200 Ω 22 nH (balanced)				
			min.	typ.	max.	
Center frequency		f _C	_	1842,5		MHz
Maximum insertion attenuation 1805,0 188	0,0 MHz	$lpha_{max}$	_	2,0	3,5	dB
Amplitude ripple (p-p) 1805,0 188	0,0 MHz	Δα	_	0,9	2,0	dB
Input VSWR 1805,01880),0 MHz		_	1,8	2,3	
Output VSWR 1805,01880),0 MHz		_	1,8	2,3	
Output amplitude balance (S ₃₁ /S ₂₁) 1805,0 1880),0 MHz		-1,5	-1,1 / +0,6	1,5	dB
Output phase balance $(\phi(S_{31})-\phi(S_{21})-\phi($			-12	+/- 6	12	o
Attenuation		α				
0,0 100 1000,0 155 1550,0 170	0,0 MHz		40 30 25	50 40 28		dB dB dB
1705,0 178	5,0 MHz		12	18	—	dB
1920,0 198			12	17	—	dB
1980,0 2010 2010 0 250			18	22	—	dB
2010,0 250 2500,0 384			20 25	26 35	_	dB dB
3840,0 600			20	32	—	dB

公TDK

SAW Components						B4167
Low-Loss Filter for Mobile Communication					1842	,5 MHz
Data Sheet	S					
Characteristics						
Operating Temperature Range: Terminating source impedance: Terminating load impedance:	Z_{S}	= 500	to +80°C 2 (unbaland 2 (balanced			
			min.	typ.	max.	
Center frequency		f _C		1842,5		MHz
Maximum insertion attenuation 1805,0 1880,0	MHz	$lpha_{max}$	_	2,5	4,0	dB
Amplitude ripple (p-p) 1805,0 1880,0	MHz	Δα	_	1,4	2,5	dB
Input VSWR 1805,01880,0	MHz		_	1,8	2,4	
Output VSWR 1805,0 1880,0	MHz		_	1,8	2,4	
Output amplitude balance (S ₃₁ /S ₂₁) 1805,01880,0	MHz		-1,5	-1,1 / +0,6	1,5	dB
Output phase balance $(\phi(S_{31})-\phi(S_{21})+180)$ 1805,0 1880,0)°) MHz		-15	+/- 6	15	o
Attenuation		α				
0,0 1000,0			40	50	_	dB
1000,0 1550,0	MHz		30 25	40 28	_	dB
1550,0 1705,0 1705,0 1785,0	MHz MHz		25 10	28 15	_	dB dB
1920,0 1980,0	MHz		10	17	_	dB
1980,0 2010,0	MHz		18	22		dB
2010,0 2500,0	MHz		20	26	_	dB
2500,0 3840,0	MHz		25	35		dB
3840,0 6000,0	MHz		20	32		dB

SAW Components		B4167
Low-Loss Filter for Mo	bile Communication	1842,5 MHz
Data Sheet	SMD	

Transfer function

Transfer function (wide band)

5

SAW Components		B4167
Low-Loss Filter for M	1842,5 MHz	
Data Sheet	SMD	

Published by EPCOS AG Surface Acoustic Wave Components Division, OFW E MF P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

Dec 06, 2000