

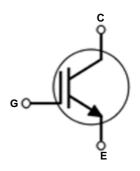
January 2008

FGPF50N30T 300V, 50A PDP IGBT

Features

- · High current capability
- Low saturation voltage: V_{CE(sat)} =1.4V @ I_C = 30A
- · High input impedance
- Fast switching
- · RoHS compliant


Applications


• PDP System

General Description

Using Novel Trench IGBT Technology, Fairchild's new sesries of trench IGBTs offer the optimum performance for PDP applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Units	
V _{CES}	Collector to Emitter Voltage		300	V	
V _{GES}	Gate to Emitter Voltage		± 30	V	
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	120	А	
P_{D}	Maximum Power Dissipation	$@ T_C = 25^{\circ}C$	46.8	W	
	Maximum Power Dissipation	$@ T_C = 100^{\circ}C$	18.7	W	
T _J	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	-	2.67	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	-	62.5	°C/W

Notes

1: Repetitive test , Pulse width=100usec , Duty=0.1

^{*} I_C_pluse limited by max Tj

Package Marking and Ordering Information

			Packaging		Max Qty
Device Marking	Device	Package	Туре	Qty per Tube	per Box
FGPF50N30T	FGPF50N30TTU	TO-220F	Rail / Tube	50ea	-

Electrical Characteristics of the IGBT $T_C = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Charac	eteristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250 \mu A$	300	-	-	V
ΔΒV _{CES} ΔΤ _J	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0V, I_C = 250\mu A$	-	0.3	-	V/ºC
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$	-	-	250	μА
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$	-	-	±400	nA
On Charac	eteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_{C} = 250 \mu A, V_{CE} = V_{GE}$	3.0	4.5	5.5	V
		I _C = 15A, V _{GE} = 15V	-	1.1	1.5	V
V	Collector to Emittor Saturation Valtage	I _C = 30A, V _{GE} = 15V	-	1.4	-	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_C = 50A$, $V_{GE} = 15V$, $T_C = 25^{\circ}C$	-	1.65	-	V
		I _C = 50A, V _{GE} = 15V, T _C = 125°C	-	1.60	-	V
Dynamic C	Characteristics Input Capacitance		-	2320	-	pF
C _{oes}	Output Capacitance	$V_{CE} = 30V_{V_{GE}} = 0V_{V_{CE}}$	_	92	_	pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz	-	80	_	pF
	Characteristics					-
t _{d(on)}	Turn-On Delay Time		_	31	_	ns
t _r	Rise Time	V_{CC} = 200V, I_{C} = 30A, R_{G} = 15 Ω , V_{GE} = 15V, Resistive Load, T_{C} = 25 $^{\circ}$ C	-	78	-	ns
t _{d(off)}	Turn-Off Delay Time		-	156	-	ns
t _f	Fall Time		-	200	300	ns
t _{d(on)}	Turn-On Delay Time		-	30	-	ns
t _r	Rise Time	V_{CC} = 200V, I_{C} = 30A, R_{G} = 15 Ω , V_{GE} = 15V, Resistive Load, T_{C} = 125°C	-	78	-	ns
t _{d(off)}	Turn-Off Delay Time		-	163	-	ns
t _f	Fall Time		-	260	-	ns
Qg	Total Gate Charge		-	97	-	nC
Q _{ge}	Gate to Emitter Charge	$V_{CE} = 200V, I_{C} = 30A,$ $V_{GE} = 15V$	-	15	-	nC
Q _{gc}	Gate to Collector Charge	*GE = 10 V	_	41	1	nC

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

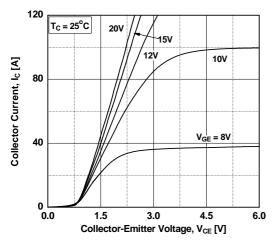


Figure 3. Typical Saturation Voltage Characteristics

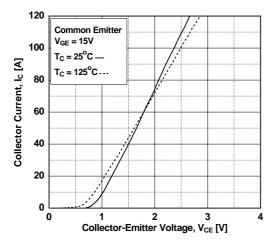
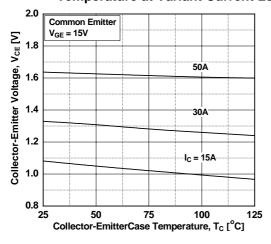



Figure 5. Saturation Voltage vs. Case
Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

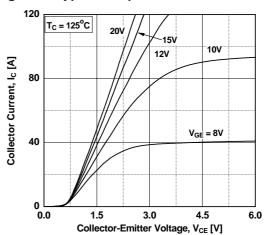


Figure 4. Transfer Characteristics

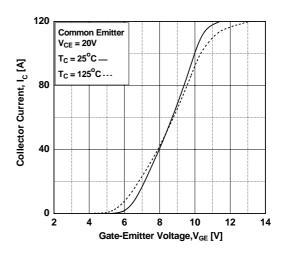
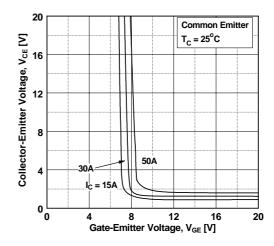



Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics

Figure 7. Saturation Voltage vs. V_{GE}

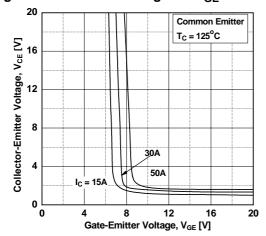


Figure 9. Gate charge Characteristics

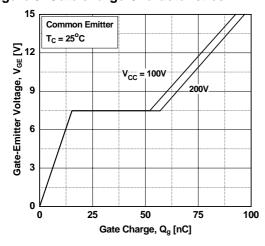
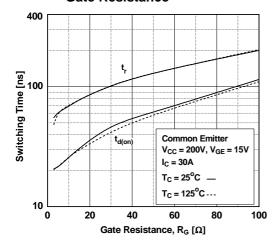



Figure 11. Turn-on Characteristics vs.
Gate Resistance

Figure 8. Capacitance Characteristics

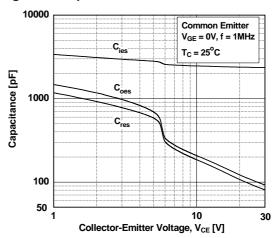


Figure 10. SOA Characteristics

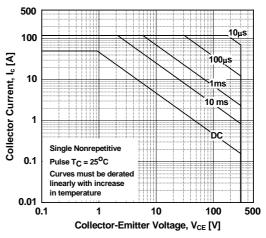
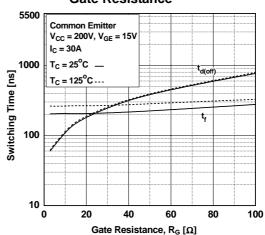



Figure 12. Turn-off Characteristics vs.
Gate Resistance

Typical Performance Characteristics

Figure 13. Turn-on Characteristics vs. Collector Current

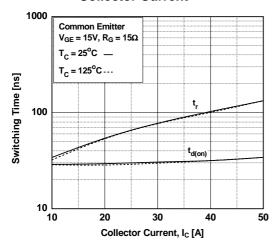


Figure 14. Turn-off Characteristics vs. Collector Current

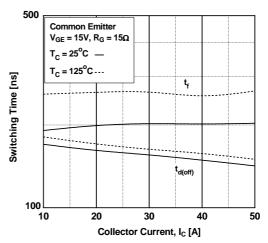


Figure 15. Switching Loss vs. Gate Resistance

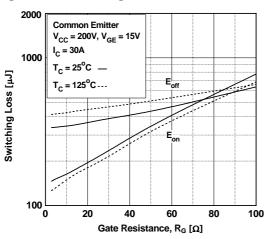


Figure 16. Switching Loss vs.Gate Resistance

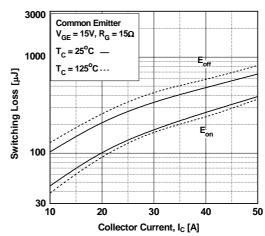
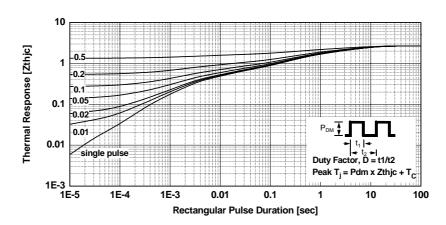
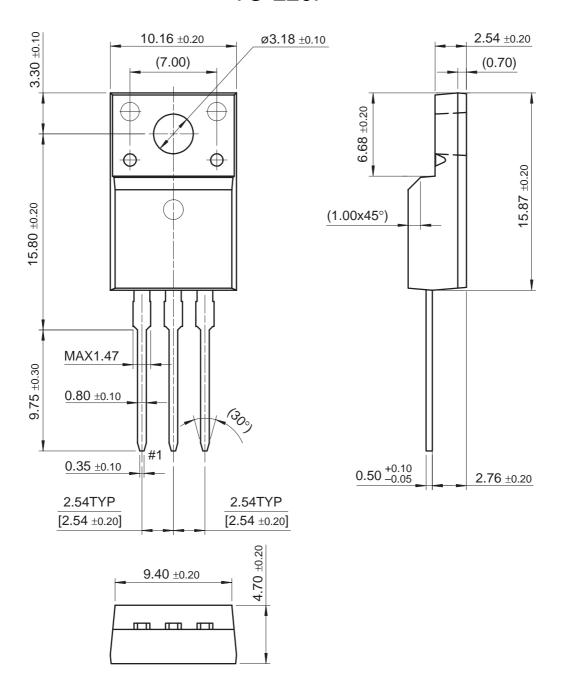




Figure 17.Transient Thermal Impedance of IGBT

Mechanical Dimensions

TO-220F

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

 $\mathsf{ACEx}^{\mathbb{R}}$ FPS™ PDP-SPM™ SupreMOS™ Build it Now™ FRFET® Power220® SyncFET™ POWEREDGE® CorePLUS™ Global Power ResourceSM SYSTEM ® Green FPS™ CROSSVOLT™ Power-SPM™ The Power Franchise® $\mathsf{CTL^{\mathsf{TM}}}$ $\mathsf{PowerTrench}^{\texttt{®}}$ Green FPS™ e-Series™ pwer GTO™ Programmable Active Droop™ Current Transfer Logic™ EcoSPARK® i-LoTM QFET® TinyBoost™ EZSWITCH™ * IntelliMAX™ $\mathsf{Q}\mathsf{S}^{\mathsf{TM}}$ TinyBuck™ ISOPLANAR™ QT Optoelectronics™ $\mathsf{TinyLogic}^{\mathbb{B}}$ MegaBuck™ Quiet Series™ TINYOPTO™ MICROCOUPLER™ RapidConfigure™ TinyPower™ airchild® MicroFET™ SMART START™ TinyPWM™ MicroPak™ $\mathsf{SPM}^{\mathbb{R}}$ Fairchild Semiconductor® TinyWire™ FACT Quiet Series™ MillerDrive™ STEALTH™ µSerDes™ FACT[®] $Motion\text{-}SPM^{\scriptscriptstyle\mathsf{TM}}$ SuperFET™ **UHC®** FAST[®] OPTOLOGIC® SuperSOT™-3 Ultra FRFET™ OPTOPLANAR® FastvCore™ SuperSOT™-6 UniFET™ FlashWriter® * SuperSOT™-8 VCX^{TM}

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which,

 (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support, device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification		Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserve the right to make changes at any time without notice to improve design.		
Obsolete Not In Production		This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		

Rev. I33

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.