November 2008

SEMICONDUCTOR®

FGH30N120FTD 1200V, 30A Trench IGBT

Features

- Field stop trench technology
- ٠ High speed switching
- Low saturation voltage: V_{CE(sat)} = 1.6V @ I_C = 30A
- High input impedance ٠
- RoHS compliant •

Applications

- Induction heating and Microwave oven
- Soft switching applications

Using advanced field stop trench technology, Fairchild's 1200V trench IGBTs offer superior conduction and switching perfor-

mances, and easy parallel operation with exceptional avalanche

ruggedness. This device is designed for soft switching applica-

General Description

tions.

Absolute Maximum Ratings

Symbol	Description		Ratings	Units
V _{CES}	Collector to Emitter Voltage		1200	V
V _{GES}	Gate to Emitter Voltage		± 25	V
I _C	Collector Current	@ T _C = 25°C	60	A
	Collector Current	@ T _C = 100°C	30	A
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25 ^o C	90	А
I _F	Diode Continuous Forward Current	@ T _C = 100 ^o C	30	А
P _D	Maximum Power Dissipation	@ T _C = 25°C	339	W
• 0	Maximum Power Dissipation	@ T _C = 100°C	132	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds	6	300	°C

Notes: 1: Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units	
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction to Case	-	0.38	°C/W	
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case	-	1.2	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W	

Package Marking and Ordering Information

Device M	larking	Device	Pac	ackage Reel Size		Таре	Tape Width		Quantity	
FGH30N1	N120FTD FGH30N120FTDTU		TC	го-247 -		-		30		
Electrica	al Cha	racteristics of t	he IG	BT T _C = 2	5°C unless otherwise noted					
Symbol		Parameter		Test	Conditions	Min.	Тур.	Max.	Units	
Off Charact	teristics									
BV _{CES}	Collector to Emitter Breakdown Voltage		oltage \	$V_{GE} = 0V$, $I_C = 250\mu A$		1200	-	-	V	
I _{CES}	Collector	Cut-Off Current	١	$V_{CE} = V_{CES}, V_{GE} = 0V$ $V_{GE} = V_{GES}, V_{CE} = 0V$		-	-	1	mA	
I _{GES}	G-E Leak	age Current				-	-	±250	nA	
On Charact	eristics									
V _{GE(th)}	[shold Voltage	l	_c = 30mA, ^v	V _{CE} = V _{GE}	3.5	6	7.5	V	
. ,				_C = 30A, V _G		-	1.6	2	V	
V _{CE(sat)}	Collector	to Emitter Saturation Vo	- 10	_C = 30A, V _G C = 125°C	_E = 15V,	-	2.0	-	V	
Dynamic Cl	haracteris	stics								
C _{ies}	Input Cap					-	5140	-	pF	
C _{oes}	Output C	apacitance		/ _{CE} = 30V, \	/ _{GE} = 0V,	-	150	-	pF	
C _{res}	Reverse	Transfer Capacitance	T	= 1MHz		-	95	-	pF	
Switching (Character	istics								
t _{d(on)}		Delay Time				-	31	-	ns	
t _r	Rise Time	9				-	101	-	ns	
t _{d(off)}	Turn-Off	Delay Time		/ _{CC} = 600V	$l_{0} = 30A$	-	198	-	ns	
t _f	Fall Time		F	$R_G = 10\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 25^{\circ}C$		-	259	-	ns	
E _{on}	Turn-On	Switching Loss	F			-	0.54	-	mJ	
E _{off}	Turn-Off	Switching Loss				-	1.16	1.51	mJ	
E _{ts}	Total Swi	tching Loss				-	1.70	-	mJ	
t _{d(on)}	Turn-On	Delay Time				-	40	-	ns	
t _r	Rise Time					-	127	-	ns	
t _{d(off)}	Turn-Off	Delay Time	\ \	/ _{CC} = 600V	. Ic = 30A.	-	211	-	ns	
t _f	Fall Time		F	R _G = 10Ω, V	′ _{GE} = 15V,	-	364	-	ns	
E _{on}	Turn-On	Switching Loss	F	Resistive Lo	ad, T _C = 125ºC	-	0.74	-	mJ	
E _{off}		Switching Loss				-	1.63	-	mJ	
E _{ts}		tching Loss				-	2.37	-	mJ	
Q _g	Total Gat	e Charge				-	208	-	nC	
Q _{ge}		mitter Charge		$V_{CE} = 600V_{e}$	I _C = 30A,	-	41	-	nC	
Q _{gc}		collector Charge		′ _{GE} = 15V		-	97	-	nC	

Symbol	Parameter	Test Con	ditions	Min.	Тур.	Max	Units
V _{FM}	Diode Forward Voltage	I _F = 30A	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	1.3	1.7	V
• FIM		.F 00/1	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	1.3	-	
t _{rr}	Diode Reverse Recovery Time		$T_{\rm C} = 25^{\rm o}{\rm C}$	-	730	-	ns
•rr	,	I _F =30A,	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	775	-	110
1	Diode Peak Reverse Recovery Current	di/dt = 200A/μs	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	43	-	А
rr			$T_{\rm C} = 125^{\rm o}{\rm C}$	-	47	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Q _{rr}	Diode Reverse Recovery Charge		$T_{\rm C} = 25^{\rm o}{\rm C}$	-	5.9	-	μC
∽rr	Disce hereice hereively charge		T _C = 125 ^o C	-	18.2	-	μΟ

Figure 3. Typical Saturation Voltage Characteristics

Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

Figure 6. Saturation Voltage vs. V_{GE}

Figure 8. Capacitance Characteristics

Figure 10. SOA Characteristics

Figure 12. Turn-off Characteristics vs. Gate Resistance

FGH30N120FTD 1200V, 30A Trench IGBT

Common Emitter

 $T_c = 25^{\circ}C$ —

T_C = 125°C

 $V_{GE} = 15V, R_G = 10\Omega$

40

Eof

Eor

40

T_J = 25^oC

T_C = 25°C

T_C = 125°C ...

50

50

1.5

Figure 21. Reverse Recovery Time

ល់ លី 0.01

1E-4

0.001 └─ 1E-5

1E-3 0.01 0.1 Rectangular Pulse Duration [sec]

Duty

Peak

Ć $T_j = Pdm \pm Zthje$

10

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

uild it Now™	F-PFS™	PowerTrench [®]	The Power Franchis
orePLUS™	FRFET [®]	Programmable Active Droop [™]	the
orePOWER™	Global Power Resource SM	QFET®	puwer
ROSSVOLT™	Green FPS™	QS™	franchise
TL™	Green FPS™ e-Series™	Quiet Series [™]	TinyBoost™
urrent Transfer Logic™	GTO™	RapidConfigure™	TinyBuck™ Tinyd a sia®
coSPARK [®]	IntelliMAX™		
fficentMax™	ISOPLANAR™	тм	TINYOPTO™ Tiny Downer™
ZSWITCH™ *	MegaBuck™	Saving our world, 1mW /W /kW at a time™	TinyPower™ TinyPWM™
	MICROCOUPLER™	SmartMax™	TinyWire™
-7	MicroFET™	SMART START™	μSerDes™
R	MicroPak™	SPM [®]	µSerDes
	MillerDrive™	STEALTH™	μ
airchild®	MotionMax™	SuperFET™	SerDes
airchild Semiconductor [®]	Motion-SPM [™]	SuperSOT™-3	UHC®
ACT Quiet Series™	OPTOLOGIC®	SuperSOT™-6	Ultra FRFET™
ACT®	OPTOPLANAR®	SuperSOT™-8	UniFET™
AST®	®	SupreMOS™	VCX™
astvCore™		SyncFET™	VisualMax™
ashWriter [®] *	PDP SPM™		
PS™	Power-SPM™	GENERAL	
	FUWEI-OFINI		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	Full Production