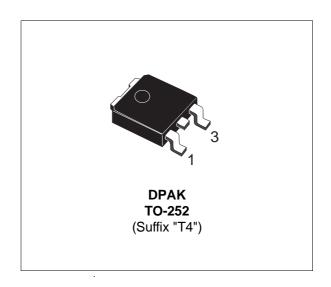
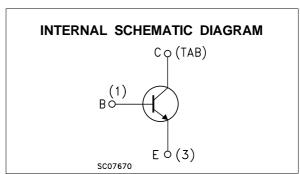


MJD50

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR


- STMicroelectronics PREFERRED SALESTYPE
- HIGH VOLTAGE CAPABILITY
- SURFACE-MOUNTING TO-252 (DPAK) POWER PACKAGE IN TAPE & REEL (SUFFIX "T4")
- ELECTRICALLY SIMILAR TO TIP50


APPLICATIONS

- SWITCH MODE POWER SUPPLIES
- AUDIO AMPLIFIERS
- GENERAL PURPOSE SWITCHING AND AMPLIFIER

DESCRIPTION

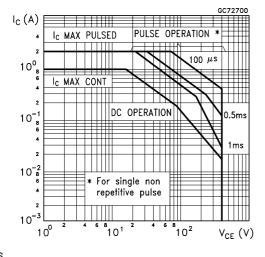
The MJD50 is manufactured using Medium Voltage Epitaxial Planar technology, resulting in a rugged high performance cost-effective transistor.

ABSOLUTE MAXIMUM RATINGS

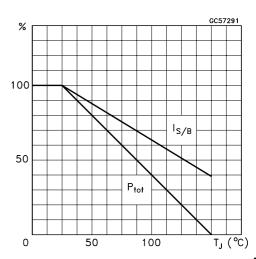
Symbol	Parameter	Value	Unit
V_{CBO}	Collector-Base Voltage (I _E = 0)	500	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	ollector-Emitter Voltage (I _B = 0) 400	
V _{EBO}	Emitter-Base Voltage ($I_C = 0$) 5		V
Ic	Collector Current	1	А
I _{CM}	Collector Peak Current (t _p < 5 ms) 2		А
lΒ	Base Current	0.6	А
I_{BM}	Base Peak Current (t _p < 5 ms)	1.2	А
P _{tot}	Total Dissipation at T _c = 25 °C	15	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

January 2000 1/6

THERMAL DATA

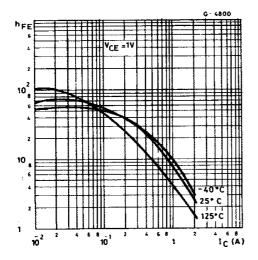

I	R _{thj-case}	Thermal Resistance Junction-case	Max	8.33	°C/W
	R _{thj-amb}	Thermal Resistance Junction-ambient	Max	100	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

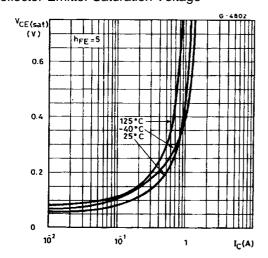

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 500 V			0.1	mA
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = 300 V			0.1	mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V			1	mA
V _{CEO(sus)*}	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 30 mA	400			V
$V_{CE(sat)^*}$	Collector-Emitter Saturation Voltage	$I_C = 1 \text{ A}$ $I_B = 0.2 \text{ A}$			1	V
$V_{BE(on)^*}$	Base-Emitter On Voltage	I _C = 1 A V _{CE} = 10 V			1.5	V
h _{FE} *	DC Current Gain	I _C = 0.3 A V _{CE} = 10 V I _C = 1 A V _{CE} = 10 V	30 10		150	
f _T	Transition Frequency	I _C = 0.2 A V _{CE} = 10 V f=2MHz	10			MHz
h _{fe}	Small Signal Current Gain	I _C = 0.2 A V _{CE} = 10 V f=1kHz	25			

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

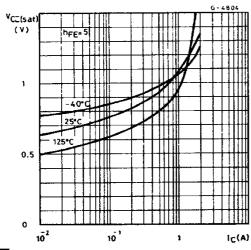
Safe Operating Area

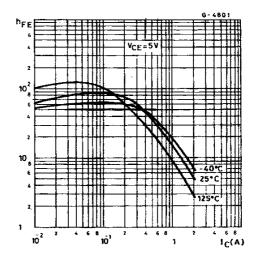


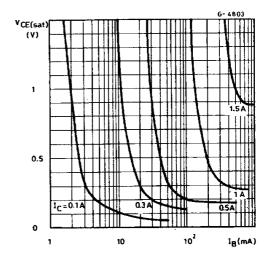
Derating Curves

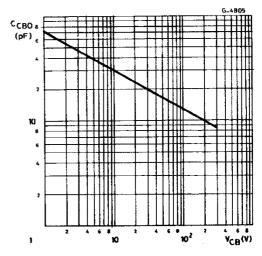


47

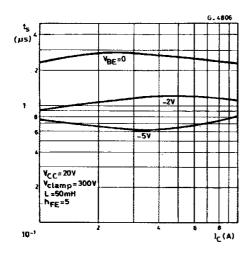

DC Current Gain


Collector-Emitter Saturation Voltage

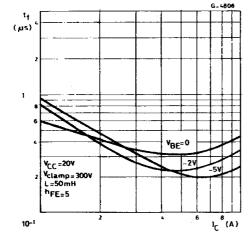

Base-Emitter Saturation Voltage


DC Current Gain

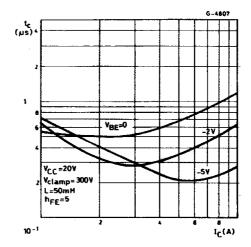
Collector-Emitter Saturation Voltage



Collector-Base Capacitance

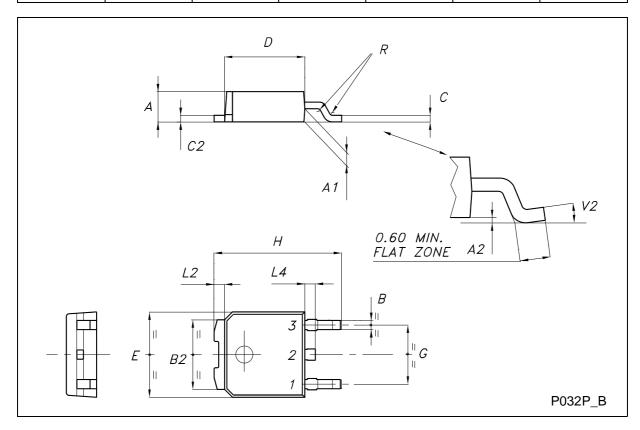


47/


Switching Time Inductive Load


Switching Time Inductive Load

Switching Time Inductive Load


Switching Time Inductive Load

4/6

TO-252 (DPAK) MECHANICAL DATA

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.213
С	0.45		0.60	0.018		0.024
C2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
Е	6.40		6.60	0.252		0.260
G	4.40		4.60	0.173		0.181
Н	9.35		10.10	0.368		0.398
L2		0.8			0.031	
L4	0.60		1.00	0.024		0.039
V2	0°		8°	0°		0°

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com